

Follow-up

Group	Group	Group
Ovary	Treatment 1	Рор А
	Treatment 2	Рор В
	Control 1	Рор С
	Control 2	

Analyze: DNA sequences Presence vs. Absence of taxa Quantitative Comparison

Positive and Negative Controls

Most relevant for Presence / Absence (Detection)

Positive control: HeLa total RNA 'Mock community'

Negative control: Water Field collection & lab

Why water?

Hybrid DNA virus in Chinese patients with seronegative hepatitis discovered by deep sequencing

Baoyan Xu^{a,b,1}, Ning Zhi^{a,1,2}, Gangqing Hu^{c,1}, Zhihong Wan^a, Xiaobin Zheng^d, Xiaohong Liu^a, Susan Wong^a, Sachiko Kajigaya^a, Keji Zhao^{c,3}, Qing Mao^{b,2}, and Neal S. Young^{a,3}

^aHematology Branch and ^cSystems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892; ^bInstitute of Infectious Disease, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; ^dDepartment of Embryology, Carnegie Institution for Science, Baltimore, MD 21218

Edited* by Harvey Alter, National Institutes of Health, Bethesda, MD, and approved March 19, 2013 (received for review March 4, 2013)

NAS

The Perils of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid Extraction Spin Columns

Samia N. Naccache,^{a,b} Alexander L. Greninger,^{a,b} Deanna Lee,^{a,b} Lark L. Coffey,^c Tung Phan,^c Annie Rein-Weston,^{a,b} Andrew Aronsohn,^d John Hackett, Jr.,^e Eric L. Delwart,^{a,c} Charles Y. Chiu^{a,b,f}

Department of Laboratory Medicine, University of California, San Francisco, California, USA^a; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA^b; Blood Systems Research Institute, San Francisco, California, USA^c; Center for Liver Disease, University of Chicago Medical Center, Chicago, Illinois, USA^d; Abbott Diagnostics, Abbott Park, Illinois, USA^e; Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, California, USA^f

Reagents can be a source of nucleic acid

		PCR result for:							
Kit	Spin column	Replicase, nt763-1010 (248 nt)		Bridge, nt1554-2044 (491 nt)		Capsid, nt1922-2044 (121 nt)		Capsid + NCR, nt3288-3448 (161 nt)	
		С	F	С	F	С	F	С	F
RNeasy MinElute cleanup kit	RNeasy MinElute column	+	+	_	+	+	+	+	+
RNeasy minikit	RNeasy minicolumn	+	+	+	+	+	+	+	+
QIAamp UltraSens virus kit	QIAamp minicolumn	+	+	_	+	+	+	+	+
QIAamp viral RNA minikit	QIAamp minicolumn	_	+	_	_	+	+	+	+
QIAamp DSP virus kit	QIAamp MinElute column	_	+	_	_	-	+	-	+
PureLink viral RNA/DNA minikit	PureLink viral column	_	_	_	_	-	-	-	-
TRIzol LS kit	NA	_	_	_	_	-	-	-	-
EZ1 viral minikit v2.0	NA	_	_	_	_	-	-	-	-
Water, nuclease-free (Qiagen, Fisher Scientific, and Epicentre)	NA	-	-	-	-	-	-	-	-

TABLE 1 PCR screening of commonly used viral nucleic acid extraction kits for parvovirus-like hybrid virus (PHV-1)^a

" NCR, noncoding region; C, column elution; F, full extraction; nt, nucleotide; NA, not applicable.

Generality vs. Specificity

Generality vs. Specificity Heterogeneity vs. Consistency

Generality vs. Specificity Heterogeneity vs. Consistency

	7 am	7:10	7:20	
Рор А	7:30	7:40	7:50	Go to class
Рор В	1 pm	1:10	1:20	
Рор С	1:30	1:40	1:50	

Generality vs. Specificity Heterogeneity vs. Consistency

OPTION 1

OPTION 2

W

Μ

	7 am	1 PM	4 PM	_	7 am	7 AM	7 AM
Рор А	7	1	4		7	7	7
Рор В	7	1	4		7	7	7
Рор С	7	1	4		7	7	7

Generality vs. Specificity Heterogeneity vs. Consistency

Homogeneous within blocks as much as possible OPTION 1 OPTION 2

	7 am	1 PM	4 PM
Pop A	7	1	4
Рор В	7	1	4
Рор С	7	1	4

7 am	7 AM	7 AM
7	7	7
7	7	7
7	7	7
M	Т	W

Sample size – Biological Replicates

RNAseq -

Depends on power you want, effect sizes you want to detect, risk of false positives you can tolerate

 $N \ge 3$ preferred for ANOVA designs, larger for smaller differences between groups & high confidence.

 $N \ge 20$ recommended for most transcriptome network or population genomic analyses, with more better

Sample size – Biological Replicates

Population genomics

- Represent populations?

Genome assembly

- None needed

Microbial quantitative comparisons - Biological replicates needed

Subset of genomes –

Immunoprecipitation – RNAs bound to activated ribosomes, or DNAs in regions that are methylated

Population or species comparisons

- Amplicon sequencing
- Reduced representation libraries via sequence capture techniques

Pooling before sequence prep:

Enough tissue?

Generality vs. individual differences

{pooling decreases weight of outlier individuals, but still need multiple pools if RNAseq}

Follow-up

Read length & Paired vs. Single end

- Gene expression quantification in species with high quality genomes: shorter reads & single end okay {maximize read number/\$}
- Otherwise, paired end & 100-150 bp {maximize bp/dollar}

RNA-seq for measuring gene expression levels

More reads per sample -> better quantification of low abundance transcripts {filter out low-count transcripts?}

Greater library complexity -> need more reads

Sample Type	Reads Needed for Differential Expression (millions)	Reads Needed for Rare Transcript or De Novo Assembly (millions)	Read Length
Small Genomes (i.e. Bacteria / Fungi)	5	30 - 65	50 SR or PE for positional info
Intermediate Genomes (i.e. Drosophila / C. Elegans)	10	70 - 130	50 – 100 SR or PE for positional info
Large Genomes (i.e. Human / Mouse)	15 - 25	100 - 200	>100 SR or PE for positional info

https://genohub.com/next-generation-sequencing-guide/

Sequence analysis

De novo genome assembly

50-100x coverage

Variant calling – heterozygosity (diploid genomes)

30x

Variant calling – haploid genome

Microbial presence/absence

At least 5000-10,000 reads per sample for 16S

How many rare taxa do you want to detect?

Empirically determined

Multiplexing strategies

Quantitative comparisons:

Samples pooled in one sequencing lane are most comparable

Sequence comparisons and presence / absence: Samples pooled in one lane can cross-contaminate

In all cases: Not all libraries equally represented – be conservative

Multiplexing strategies: Quantification

Pop A – R1	1	2	3	4	5
Pop A – R2	1	2	3	4	5
Pop B – R1	1	2	3	4	5
Pop B – R2	1	2	3	4	5
Pop C – R1	1	2	3	4	5
Pop C – R2	1	2	3	4	5
Pop D – R1	1	2	3	4	5
Pop D – R2	1	2	3	4	5
Pop E – R1	1	2	3	4	5
Pop E – R2	1	2	3	4	5
Pop F – R1	1	2	3	4	5
Pop F – R2	1	2	3	4	5
Pop G – R1	1	2	3	4	5
Pop G – R2	1	2	3	4	5
Pop H - R1	1	2	3	4	5
Pop H – R2	1	2	3	4	5

Maintain blocks throughout library prep and sequencing

Cross-contamination: Index hopping

Cross-contamination: Index hopping

Table 1: Best Practices for Reducing Index Hopping

Mitigation/Recommendation	Benefit/Outcome
Prepare dual indexed libraries with unique indexes ^a	Converts index hopped reads to undetermined
Sequence one 30× human genome per lane ^b	Avoids pooling and index hopping
Remove adapters (cleanup, spin columns, etc)°	Reduces levels of index hopping
Store prepared libraries at recommended temperature of –20° C ^c	Reduces levels of index hopping
Pool similar RNA-Seq samples together	Reduces contamination between high and low-expressors

https://www.biorxiv.org/content/early/2017/04/09/125724 https://www.biorxiv.org/content/early/2017/08/16/177048 https://www.biorxiv.org/content/early/2017/09/01/182659 https://www.biorxiv.org/content/early/2017/10/10/200790 https://www.illumina.com/content/dam/illuminamarketing/documents/products/whitepapers/index-hoppingwhite-paper-770-2017-004.pdf

Cross-contamination: Sequencer

Because of close position of clusters on a flow-cell index reads get misassigned at a high rate: ~0.3% (Kircher et al. 2011, Nucleic Acids Res.)

When this matters a lot:

- Single-cell genomics
- RNA-seq (especially comparative transcriptomics)

When it is more tolerable:

• Genome sequencing

Reduce cross-contamination impacts

Reduces cluster misassignment if indexes are used in a redundant fashion

Increases degree of multiplexing if indices are used in a combinatorial fashion