An overview of genomics and sequencing terminology and practices

Mark Stenglein

Computational Biology and Genomics Workshop
Todos Santos Center
April 9-13, 2018
The jargon and terminology association with genomics and ‘next gen’ sequencing can be confusing and intimidating.

The goal of this lecture is to explain and demystify some common jargon and explain how sequencing works.
There is a glossary available online that explains many of these terms.

https://github.com/stenglein-lab/2018_Todos_Santos/blob/master/Genomics_and_NGS_Glossary.md
Genomics is the study of any of a number of attributes of genome or genomes

- **Genome:**
 - size
 - sequence
 - structure / variation
 - evolution
- **Gene:**
 - structure
 - expression
- **Comparative genomics**
- **Epigenomics**
- **Metagenomics**
- **Transcriptomics**
- **Other -omics:** Proteomics/Metabolomics
Genomics isn’t the same thing as sequencing, but they’re increasingly related.
Sanger Sequencing (1977): sequencing 1 target at a time

ddNTPs terminate DNA synthesis.

Normal dNTP (extends DNA strand)
3' OH
5' CH₂ Base

ddNTP (terminates synthesis)
3' H
No OH

Labeled terminator (ddNTP)

Improvements to Sanger sequencing and molecular methods allowed the sequencing of increasingly large genomes

1965 – First nucleic acid sequenced: Yeast trnA

1976 – First complete genome sequenced (RNA virus: bacteriophage MS2)

1977 – Maxam-Gilbert and Sanger DNA sequencing methods introduced and first complete DNA genome (Phage Φ-X174)

1983 – PCR introduced

1995 – First complete cellular genome (Haemophilus influenzae) and eukaryotic genome (yeast) sequenced

2001 – Publication of the first sequenced human genomes

2005 – Introduction of 454 Sequencing and the NGS Revolution

2005 – present: Rapid evolution of NGS technology

Slide courtesy Dan Sloan.
Next generation sequencing (NGS) ~ deep sequencing ~ high throughput sequencing (HTS)

All simultaneously sequence many molecules in parallel

Short read sequencing
- Millions of reads
- Relatively short: ~50-300 nt (Illumina)
- Relative low error rates
- Illumina has virtually all of the market share

Long read sequencing
- Fewer, longer reads
- >1 kb (PacBio), up to 100s of kb (Oxford Nanopore)
- Relative high error rates

MiSeq

Oxford Nanopore MinION

PacBio RS-II
Illumina instruments use sequencing by synthesis (SBS)

Millions of clusters per flow cell
Each cluster contains 1000s of clonal copies of a library molecule

Library molecules are sequenced by primer extension reactions that incorporate chain-terminated, fluorescent nucleotides

real raw Illumina sequencing data

Image credit: Illumina
Long read sequencers sequence single molecules

Much longer reads, but with much higher error rates

Image: Oxford Nanopore
Library prep converts nucleic acids into a form suitable to be sequenced.
Library prep converts nucleic acids into a form suitable to be sequenced.

The library consists of a population of molecules derived from the sample's nucleic acid.

The middle part (grey) is derived from the sample's nucleic acid.

During library prep, adapters (blue) are added to each end of the library molecule.

An example Illumina library molecule.
Barcodes (or indexes) allow sample multiplexing
Illumina sequencing produces 1-4 reads per library molecule

In single end sequencing, a library molecule is sequenced from one end

In paired end sequencing, a library molecule is sequenced from both ends

The library molecule’s barcodes (indexes) are typically read in separate "index reads"

Unique barcodes or barcode pairs can be used to differentiate multiplexed samples
Reads are sub-sequences of the starting nucleic acid that often contain errors.
There are many good ways to make sequencing libraries

Common library prep steps (not always included and not always in this order)

- Nucleic acid isolation
- Enrichment (of nucleic acid subtypes you want) or subtraction (of those you don’t want)
- Nucleic acid fragmentation
- Conversion of RNA into dsDNA (for RNA sequencing)
- Addition of adapters to ends of library molecules, possibly with barcodes for multiplexing
- Library amplification
- Pooling of multiplexed samples
- Library QC / quantification

Adapters can be added to sample-derived dsDNA by ligation
How you make a library determines what type of sequencing you're doing.

For instance, if you make a ‘shotgun library’ from a single organism, you’re doing whole genome sequencing (WGS).
How you make a library determines what type of sequencing you're doing.

For instance, if you make a ‘shotgun library’ from a community DNA sample, you’re doing **metagenomics**.

The library preparation methods are identical to those used for whole genome sequencing. You’re just starting with a different kind of DNA sample.
Microbiome sequencing often means **16S rRNA** sequencing.

16S sequencing is one type of 'amplicon sequencing'.

![Diagram](image)
How you make a library determines what type of sequencing you’re doing

If you make a library from mRNA, that is **RNA-Seq** (transcriptome sequencing)

The abundance of reads from a particular mRNA is proportional to that mRNA’s abundance in the cell
There are **5 billion** ways to make libraries and to do sequencing (all have names that end in -seq)

They’re all variations on a few themes. Don’t let it overwhelm you. Most sequencing is of a few simple types, and it’s better to focus on the Biology and experimental design.
Mapping is the process by which sequencing reads are aligned to the region of a genome from which they derive.
(De novo) **assembly** is the process of trying to reconstruct a genome sequence from reads not yet sequenced genome.

Coverage is the number of individual reads that support a particular nucleotide in an assembled (reconstructed) sequence or that align to a particular nucleotide in a reference sequence. Coverage is often referred to as 'depth' or 'depth of coverage'.

Read 1: CGGATTACGTTGGACCATG (read length of 18)
Read 2: ATTACGTGGACCATGAATTGCTGACA
Read 3: ACCATGAATTGCTGACATTCGTCA
Read 4: TGAATGGCTGACATTGTCAT
Depth: 111222222222333334433333333333333322222221
Coverage from WGS of a bacterial isolate
Questions?

Is there genomics or sequencing jargon about which you’re not certain?