Outline

- Introduction to RNA-seq
- Sample preparation
- Quality control
- Transcript assembly
- Read alignment
- Differential gene expression
- Data visualization and plotting

Regulation of gene expression

Regulation of transcription:

- Transcription factors
- Histone modifications
- DNA methylation

Regulation of RNA processing:

- Polyadenylation
- Splicing
- Capping
- RNA export

Regulation of translation:

- mRNA decay
- Translational repression
- Sequestration

Posttranslational regulation:

- Chemical modifications (e.g. phosphorylation)
- Protein turnover (proteolysis)

RNA-seq measures steady state mRNA levels and RNA sequence composition

Fu et al. (2014)

RNA-seq is the most common HTS application

Sample preparation

- Use high-quality RNA as starting material.
- Minor differences between samples can have a substantial impact on gene expression.
- Three biological replicates is the default but not ideal for every situation.
- Some recommended kits for standard RNA-seq:
 - NEBNext Ultra II Directional RNA Library Prep Ki
 - Illumina kits

Sample preparation

- Starting RNA
 - Typically 1-5 ug of high-quality total RNA is ideal.
- Sequencing depth
 - Typically you want about 20 million high quality reads/library.
- Considerations
 - Strand specific (default is yes)
 - Single-end or paired-end (single is sufficient for well annotated transcriptomes)
 - Long reads vs short reads (short Illumina reads, 50-150 nt, are usually sufficient)
 - rRNA depletion or oligo-dT
 - Low quantity/single cell

RNA-seq library preparation

Library composition

For the second s

Slide content courtesy of Illumina

HiSeq 2500

FASTQ format

Index sequence

Line 1: sequence ID, description, and index; begins with @

Line 2: sequence; contains only A, C, T, G, and N

Line 3: optional sequence ID; begins with +

Line 4: signal quality of each base, cryptic code, phred 33 or 64

Data analysis workflow

fastq files downloaded from server

Demultiplexing and quality assessment

Quality control – filter low quality data, trim adapters

— Map sequences to reference or de novo assemble reference

Custom or standard data analysis

Data visualization and presentation

Quality control

Assessing Read Quality

Phred quality score: a measure of the quality of base calling: $Q = -10 \log(P)$ where P is the error probability

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Quality control 10 reads 10 reads 100 bases — 100 bases — P = 0.01P = ? $Q = -10 \log(P)$ Q = 20 (Q20)Q = ?

Q30 is a common quality threshold or quality criterion

Quality control

FastQC: a GUI tool for assessing the quality of high-throughput sequencing data.

Trimmomatic: software for trimming adapter sequences and lowquality bases from sequencing reads.

Sequence mapping/alignment

Table 1 A selection of short-read analysis software					
Program	Website	Open source?	Handles ABI color space?	Maximum read length	
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None	
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None	
Maq	http://maq.sourceforge.net	Yes	Yes	127	
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None	
Novoalign	http://www.novocraft.com	No	No	None	
SOAP2	http://soap.genomics.org.cn	No	No	60	
ZOOM	http://www.bioinfor.com	No	Yes	240	

Trapnell and Salzberg (2009)

Aligning reads to mRNAs

Differential gene expression

Trapnell et al (2010)

RNA-seq pipelines

Integrative Genomics Viewer (IGV)

Genome browsers

UCSC Genome Browser

Trinity workflow

