

Mapping

Mark Stenglein

Computational Biology Workshop

Todos Santos Center May 9-12, 2022

Mapping is the process by which sequencing reads are aligned to the region of a genome from which they derive.

You need to have an existing reference sequence to map to

Mapping output

Does each read map? Where on the ref. seq. does it map? *How well* does it map?

Genome assembly is the process of trying to reconstruct a genome sequence from reads (making a new reference sequence)

Image: Commins, J., Toft, C., Fares, M. A (2009)

not yet sequenced genome

Coverage is the number of individual mapped reads that support a particular nucleotide in a reference sequence

coverage is often referred to as 'depth' or 'depth of coverage'

This T at position 1430 in the reference sequence has 4x coverage

Coverage is also used to describe the fraction of a genome with >0 coverage depth

reads from human oral swab RNA aligned to a coxsackie virus genome

96% genome coverage (96% of bases have >0x coverage) 3.4x average coverage depth (range 0-9x)

hand foot and mouth disease

Applications of mapping

- Quantification: using reads for counting: sequence itself not important per se

 - ChIP-seq: coverage levels proportional to binding of proteins to DNA sequences
- Variant identification
 - Single nucleotide variants (SNVs aka SNPs)
 - Structural variants
 - Consensus-changing or sub-consensus
- **Remove sequences** of specific origins
 - Contaminating organisms
 - Plasmid
 - Organellar

• RNA-seq: reads mapping to a particular transcript proportional to its abundance in the sample

There are variants in the reads relative to the co reference sequence: these differences are the basis for 'variant calling'

reads from human oral swab RNA aligned to a coxsackie virus genome

mismatches between reads and the reference sequence

hand foot and mouth disease

Mapping can be used to remove reads that derive from an organism you don't care about

You can sequence everything and use a mosquito reference genome to remove all the mosquito reads leaving reads from all the other non-mosquito organisms

Mapping Exercise

Work in pairs to map reads to the provided 'genome'

Questions to consider while doing this mapping exercise

Coverage

What was the (approximate) average coverage depth? What was the maximum coverage depth? What was the minimum coverage depth? Was coverage across the 'genome' even? What percent of the genome was covered by at least one read?

Mapping

Were all of your reads mappable? Where did the unmappable reads come from? In a real sequencing dataset, why might there be unmappable reads? What fraction (approximately) of reads mapped unambiguously (uniquely)? Did you identify any sequencing errors? Did you identify any variants (SNPs)?

Speed

What was your mapping speed (how many reads per minute did you map)? How do you think that speed compares to the speed of mapping software like bowtie or bwa? Could you have mapped faster with more workers in your group?

go_to_the hoosx to g moon we ch _to_jo_to oose to_go e moon we choose to moon we c e_to_go_to hoose to g o tosthe m _mo_go_to_ go to the hoose to g hoose to q se to go_t

things, not because they are easy, but because they are hard ings not b y are easy yr_things_ ecause_the -_easy_but_ cause_they r things n use they a ey are eas they are e but becau they are h ngs not be y are easy bacause t things no easy but b y are easy ut because re easy bu easy but easy but

10x coverage of this e

Unmapped reads:

coronaviru us vactine

Uniquely mapped Ambiguously mapped

59 reads:

- 57 mapped (97%):
 - 32 mapped uniquely (54%)
- 2 unmapped (3%)

Ox coverage of this d

ey are har

Coverage:

- 57 mapped reads x 10 'bases' / read = 570bases of data
- 570 base / 150 base genome = 3.8x avg coverage

Mapping tools like bowtie2 map fast!

Bowtie2 mapping **1M** 50nt reads to the human genome (3B bp) **1 CPU** (1 thread/1 core):

[mdstengl@cctsi-104:~/analyses/test_human_mapping\$ time ./run_bowtie ERR3252925_1_1M.fastq GCA_000001405.15_GRCh38_no_alt_an] alysis_set.fna.bowtie_index

bowtie2 -x GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.bowtie_index -q -U ERR3252925_1_1M.fastq --local --score-min C,1 00,1 ---no-unal ---threads 1 -S ERR3252925_1_1M.fastq.GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.bowtie_index.sam

real	1m16.427s
user	1m13.836s
sys	0m12.844s

1 minute 16 seconds: 13,000 reads per second

Bowtie2 mapping **1M** 50nt reads to the human genome (3B bp) **24 CPUs** (24 thread/24 core):

Imdstengl@cctsi-104:~/analyses/test_human_mapping\$ time ./run_bowtie_multiple_threads ERR3252925_1_1M.fastq GCA_000001405.15 _GRCh38_no_alt_analysis_set.fna.bowtie_index bowtie2 -x GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.bowtie_index -q -U ERR3252925_1_1M.fastq --local --score-min C,1 00,1 ---no-unal ---threads 24 -S ERR3252925_1_1M.fastq.GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.bowtie_index.sam

real	0m9.641s
user	1m38.696s
sys	0m33.124s

9.6 seconds: ~100,000 reads per second

Like airport security, computers can run tasks in parallel to make jobs go faster

Done being processed

Mapping tools map fast because they **pre-index** reference sequences

Indexes help you find things faster

BLAST databases are another example of pre-built indexes

Mapping software includes tools to build the index

Alu sequences in the human genome 1 million copies, ~10% of the mass

If you had a read derived from an Alu sequence, which of these million copies should you map it to?

Reads might map to more than one location in a genome

This is especially a problem for reads that derive from repeat elements

Bolzer et al (2005) PLoS Biol

Mapping quality measures whether a read maps uniquely or not

Mapping quality: higher = more unique

The aligner cannot always assign a read to its point of origin with high confidence. For instance, a read that originated inside a repeat element might align equally well to many occurrences of the element throughout the genome, leaving the aligner with no basis for preferring one over the others.

Aligners characterize their degree of confidence in the point of origin by reporting a mapping quality: a non-negative integer Q = -10 log10 p, where p is an estimate of the probability that the alignment does not correspond to the read's true point of origin. Mapping quality is sometimes abbreviated MAPQ, and is recorded in the SAM MAPQ field.

Mapping quality is related to "uniqueness." We say an alignment is unique if it has a much higher alignment score than all the other possible alignments. The bigger the gap between the best alignment's score and the second-best alignment's score, the more unique the best alignment, and the higher its mapping quality should be.

Accurate mapping qualities are useful for downstream tools like variant callers. For instance, a variant caller might choose to ignore evidence from alignments with mapping quality less than, say, 10. A mapping quality of 10 or less indicates that there is at least a 1 in 10 chance that the read truly originated elsewhere.

From: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

Mapping tools like bowtie2 have options that define how they will deal with ambiguously mapping reads and provide information about whether a read mapped uniquely or not

Mapping Q score = $-10 \log_{10}$ (probability that the read is not mapped to its true location)

Q score				
	10			
	20			

20
30
40

Mapping quality scores are like basecall quality scores in FASTQ files

Quality score = $-10 \log_{10} (p)$

Basecall Q score = -10 log₁₀ (probability baseball is incorrect)

Ρ	
0.1 = 1/10	
0.01 = 1/100	
0.001 = 1/1,000	
0.0001 = 1/10,000	

```
bowtie2 -x /home/databases/fly/fly_genome -q -U dros_pool_R1_fu.fastq --local --score-min C,120,1 --no-unal --time --al dros pool R1 fu.
astq.fly genome.hits.fastq --threads 12 -S dros pool R1 fu.fastq.fly genome.sam
Time loading reference: 00:00:00
Time loading forward index: 00:00:01
Time loading mirror index: 00:00:00
Multiseed full-index search: 00:00:08
186708 reads; of these:
  186708 (100.00%) were unpaired; of these:
   20301 (10.87%) aligned 0 times
    87911 (47.08%) aligned exactly 1 time
    78496 (42.04%) aligned >1 times
89.13% overall alignment rate
Time searching: 00:00:09
Overall time: 00:00:09
42% of reads mapped
                                   47% of reads mapped uniquely
```

non-uniquely

bowtie2 mapped reads from *Drosophila melanogaster* to the *D. melanogaster* reference genome

10% of reads didn't map, what are these?

The output of mapping software is SAM format files

Header lines, start with @, provide info about the reference sequences and the mapping software used

@HD	VN:1.0	SO:unso	orted							
@SQ	SN:KP71	4088_Cha	aq	LN:1488						
@SQ	SN:KP75	7930_Sp	ock_RdRp	LN:1710						
@SQ	SN:KP71	4099_Ga	lbut_1	LN:1413						
@SQ	SN:KP71	4100_Ga	lbut_2	LN:1589						
@PG	ID:bowt	ie2	PN:bow	tie2	VN:2.3.	2	CL: "/home	e/apps/	bin/bo	wtie2-a
ssthroug	gh −U F4	-17_R1_:	fuh.fast	q"						
NS500697	7:120:HG	WL5AFXY	:1:11102	:12345:66	29	16	KP714100	_Galbut	:_2	188
AACAACAA	ACCGCGTC	CAGTCCA	GAAAAACG	CGGGCAGCA	GACCAAAG	AAGTCTAG	CGATAGAGG	CCCAGAG	CCTAAA	CCGACA
AEEEEEE	EEAEEEEE	EEEEEEI	EEEEEEEE	EEEEEEEE	EEEEEEEE	EEEEEEEE	EEEEEEEE	EEEEEE	CEEEEEE	EAEEEA
NS500697	7:120:HG	WL5AFXY	:1:11208	:16336:12	687	16	KP757930	_Spock_	RdRp	861
GGTTAATC	CCGTGAGT	GTTTCAA	AATCGTAA	TGGATTGCT	TCTACAAA	AACCTAGG	CCCCGGCGA	CTATCA	GTCTTC	AGTAAG
EEEEEEA	AEEEEEEE	EEEEEEI	EEEEEEEE	EEEEEEEE	EEEEEEE	EEEEEEEE	EEEEEEEE	EEEEEE	CEEEEEE	EEAEEA
8G0T2T9	Y	T:Z:UU								
NS500697	7:120:HG	WL5AFXY	:1:11210	:23050:94	58	16	KP757930	_Spock_	RdRp	857
TCATGGTI	TAATCCGT	GAGTGTT	TCAAAATC	GTAATGGAT	TGCTTCTA	CAAAAACC	TAGGCCCCG	GCGACTA	TCAAGT	CTTCAG
EEEEEEE	EEEEEEE	EEEEEEE	EEEEEEEE	EEEEEEEE	EEEEEEE	EEEEEEE	EEEEEEEE	EEEEEE	EEEEEE	EEEEEA
8 YI	C:Z:UU									

After header lines, one line per mapped read, with 11 columns separated by tabs

SAM column	Info
1	The read's name
3	The mapped-to reference sequen
4	Position in the reference sequenc
5	Mapping quality score
6	Whether there are mismatches to
10	The read's sequence
11	The read's basecall quality scores

align-s --wrapper basic-0 -x galbut -q --local --score-min C,120,1 --time --threads 24 --pa 150M 44 0 0 * CAACCGGTTTTTTGAGTATGAGCGTGCAATGGAACGCCTCAACCGGC ACAGTCGAGCAGGGGCAGCGA AAA AS:i:300 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150 YT:Z:UU 36 150M * 0 0 TTTTTGTTCACTGACTATACGGCGTTTGACAGTTCAGTGCCCTCAT ATAGTCAACTACTTTATTAAC AAA AS:i:225 XN:i:0 XM:i:11 XO:i:0 XG:i:0 NM:i:11 MD:Z:29T8A9C13C5G2A24T10T2 36 140M10S * 0 0 CAAATTTTTGTTCACTGACTATACGGCGTTTGACAGTTCAGTGCCC **FAAGATAGTCAACTACTTTAT** AAA AS:i:224 XN:i:0 XM:i:8 XO:i:0 XG:i:0 NM:i:8 MD:Z:33T8A9C13C5G2A24T10T2

ice name

e where the read maps

the reference sequence

SAM files are used as input to downstream tools that use mapping data

- Convert to BAM (compressed binary SAM)
- Quantify coverage depth
- Filter reads mapped to a particular chromosome

Variant calling

Tabulate mapping read counts (e.g. to transcripts for RNA-seq)