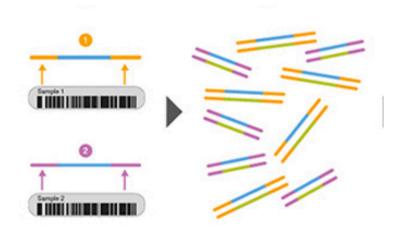

Multiplexing

Pooling Libraries from Different Samples

Index sequences are "barcodes" for multiplexing

i5 Index Sequence



i7 Index Sequence

- Multiplexing involves pooling libraries from different biological samples to be sequenced together on the same flow cell.
- The i5 and i7 index sequences are barcodes that are shared by all molecules from the same library so that libraries can be distinguished from each other during data analysis.

General Multiplexing Recommendations

 Incorporate library-specific barcodes. Avoid home-brew methods that add the barcode directly at the end of the DNA insert unless you know what you are doing.

- Be conservative about pooling
 - Not all libraries will be equally represented in your mix
 - Number of clusters may be lower than anticipated

 Consider how cross-contamination will affect your analysis and use redundant dual-indexing when possible.

Single vs Dual Indexing

Figure 1 Single-Indexed Sequencing

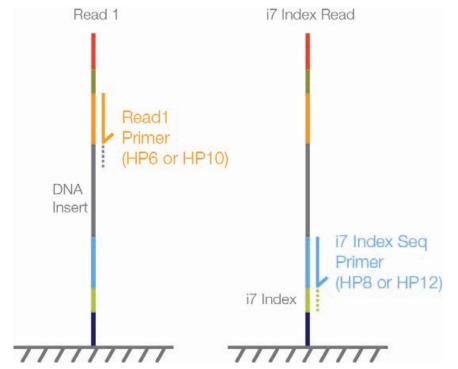
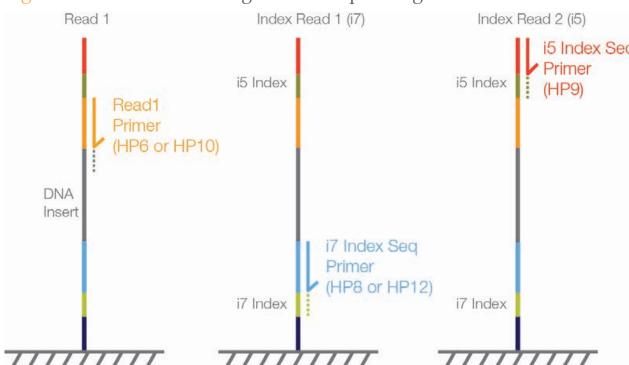



Figure 2 Dual-Indexed Single-Read Sequencing

Dual indexing can either reduce library cross-contamination if indexes are used in a redundant fashion...

...or increase the degree of multiplexing if indexes are used in a combinatorial fashion.

Index "Hopping" and Library Cross-Contamination

Even with perfect lab technique, library contamination occurs on the flow cell.

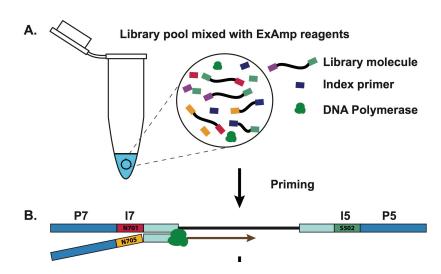
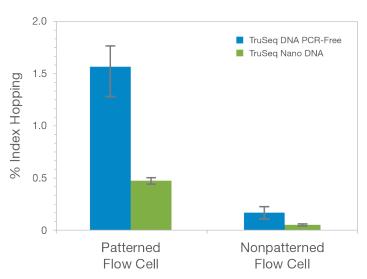



Table 1: Best Practices for Reducing Index Hopping

Mitigation/Recommendation	Benefit/Outcome
Prepare dual indexed libraries with unique indexes ^a	Converts index hopped reads to undetermined
Sequence one 30× human genome per lane ^b	Avoids pooling and index hopping
Remove adapters (cleanup, spin columns, etc) ^c	Reduces levels of index hopping
Store prepared libraries at recommended temperature of -20° C°	Reduces levels of index hopping

When this matters a lot:

- Single-cell genomics
- RNA-seq (especially comparative transcriptomics)

When it is more tolerable:

· Genome sequencing

Library Pooling Calculations

```
Converting concentration to molarity with dsDNA libraries \frac{(\text{concentration in ng/}\mu\text{l})}{(660 \text{ g/mol} \times \text{average library size in bp})} \times 10^6 = \text{concentration in nM}
```

Helpful hints: Moles = Molarity x Volume $uL = 1 \times 10^{-6} L$ $nM = 1 \times 10^{-9} M$ fmole= 1×10^{-15} moles

A) If the average size of your amplicon is 300 bp, what is the molarity of each of the following libraries?

Library Sample A) 1.2 ng/uL

Library Sample B) 1.8 ng/uL

Library Sample C) 2.0 ng/uL

- B) How many moles are in 2 µL of each sample?
- C) If you wanted to add 10 fmoles of each library to a pooled library for sequencing, how much volume (in uL) would you add to each?
- D) The sequencing facility you are sending your sample to requires that you send at least 10 uL of sample that is > 4 nM. Open the pooling spread sheet: https://dbsloan.github.io/todos_santos_ngs2019/protocols/pooling_spreadsheet.xlsx

Input the molarities you found for each library sample. Enter 10 fmoles in for each sample. Would this pooling scheme meet the facility's requirements?