## Nucleic Acid Quality Control

## Three Dimensions of DNA and RNA Sample Quality Control

• Quantity. How much total DNA/RNA is in the sample, and what is the sample concentration?

• Integrity. What is the size distribution of my DNA/RNA molecules? Is the sample degraded?

• **Purity**. Is the sample contaminated with other chemicals or types of nucleic acids?

## **Tools for DNA and RNA Quality Control**

- 1. Fluorometry (Qubit)
  - Quantity
- 2. Spectrophotometry (NanoDrop)
  - Quantity
  - Purity (non-nucleic-acid sources of contamination only)
- 3. Conventional Gel Electrophoresis
  - Integrity (especially for genomic DNA samples)
  - Purity (DNA or RNA contamination only; not other sources of contamination)
- 4. Agilent TapeStation or Bioanalyzer Electrophoresis
  - Quantity
  - Integrity (especially for RNA samples)
  - Purity (DNA or RNA contamination only; not other sources of contamination)



## Measuring DNA or RNA Quantity with Fluorometry (Qubit)



Dyes that specifically bind to DNA or RNA and fluoresce when bound



|                 | all and a second se |
|-----------------|----------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                |
|                 |                                                                                                                |
|                 |                                                                                                                |
|                 |                                                                                                                |
|                 | COMPARENCE STATE                                                                                               |
|                 |                                                                                                                |
|                 |                                                                                                                |
|                 |                                                                                                                |
|                 |                                                                                                                |
|                 | A A A A A A A A A A A A A A A A A A A                                                                          |
|                 | The second second                                                                                              |
|                 |                                                                                                                |
| All area        | A Starting                                                                                                     |
| A CONTRACTOR OF |                                                                                                                |

#### Advantages

- Accurate measurement of DNA or RNA concentrations even in samples contaminated with chemicals or other types of nucleic acids
- High sensitivity

#### Disadvantages

• Little to no information about sample integrity or purity

## Measuring DNA or RNA Quantity and Purity with NanoDrop



#### Quantifies UV absorbance of sample



260hn

280,nm

32 -30

24

22 20

18

230nm



#### **Advantages**

Can detect the presence of chemical ٠ contamination from sources such as phenol, polysaccharides, salts, and protein.



#### Disadvantages

Quantification is (highly) overestimated when • contaminants are present.

320

330

310

- Limited sensitivity (unreliable below 20 ng/ul) ٠
- Cannot distinguish well between DNA and RNA •
- No information about nucleic acid size or ٠ degradation

## Assessing DNA or RNA Integrity with Gel Electrophoresis

Separate nucleic acids by size by applying current across a porous gel matrix



#### Advantages

- Can identify size distribution of nucleic acid molecules and detect degradation
- Can identify contaminating RNA in DNA samples

#### Disadvantages

- Only provides a rough sense of nucleic acid quantity based on intensity of fluorescence
- Uninformative with respect to chemical contamination in sample



### **Agarose Gel Electrophoresis – Genomic DNA Samples**



For each of the three genomic DNA samples, answer the following questions.

- Is there evidence of DNA degradation in the sample?
- Is there evidence of contamination in the DNA sample?
- Would you expect a DNA Qubit test and NanoDrop analysis to produce similar estimates for the concentration of the DNA sample? Or would the Qubit and NanoDrop estimates differ greatly from each other?



### **Agarose Gel Electrophoresis – Genomic DNA Samples**





## **Agilent Bioanalyzer and TapeStation Electrophoresis**

Scoring RNA integrity



#### Advantages

Higher sensitivity and better size resolution than conventional electrophoresis

#### Disadvantages

- Uninformative with respect to sample contamination
- More expensive than the other described tools



## Which is the Best Quality Control Tool?

- You have been having difficulties with protein contamination in your DNA extractions and want to know if your new extraction method is fully removing this contaminant from your DNA preps.
- You are going to perform long-read nanopore sequencing and want to make sure your genomic DNA sample is not degraded (fragmented).
- You are going to perform mRNA-seq to measure gene expression and want to make sure that your RNA sample is not degraded.
- You have completed a DNA extraction and want to know whether it is contaminated with RNA.

# Methods Summary

|                                     | Qubit | NanoDrop | Gel<br>Electrophoresis | TapeStation |
|-------------------------------------|-------|----------|------------------------|-------------|
| Quantify Concentration              | Yes   | Yes      | Very Roughly           | Yes         |
| Assess Integrity                    | No    | No       | Yes                    | Yes         |
| <b>Detect Chemical Contaminants</b> | No    | Yes      | No                     | No          |
| Distinguish RNA and DNA             | Yes   | No       | Yes                    | Yes         |
| Equipment Cost                      | \$    | \$\$     | \$                     | \$\$\$      |
| Per Sample Cost                     | \$\$  | \$       | \$\$                   | \$\$\$      |

### Many Sequencing Applications Do Not Require Perfect DNA

"... le mieux est l'ennemi du bien." -- La Bégueule, Voltaire



>20 year old insect DNA samples that were degraded, contaminated, and visibly yellow in color... still worked fine for Illumina sequencing! So be pragmatic and use common sense.